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Abstract
A triple of quantum numbers of conventional zone theory, namely the quasi-
momentum, described in terms of Bloch functions, the lattice coordinate,
described in terms of Wannier functions, and the associated energy band
index, are modified to describe the space of states of a charged particle in
magnetic field, in a translation covariant manner. A quartet of Bloch functions
that belong to an invariant subspace, and define an irreducible representation
of an anticommutative subgroup of the magnetic translation group, lead to
Wannier function sets at a single Landau level that satisfy the exponential
localization criterion. The degrees of freedom within the invariant subspace
of this physically irreducible representation match those of spin 1/2. With a
view to possible experimental studies, it is shown how a set of four regular
arrays of connected wires or a similar quantum device may be used to access
the pseudo-spin degree of freedom described, by observation of the effects of
a controlled doubly periodical electric potential applied to a 2DEG in a strong
and commensurate magnetic field.

1. Introduction

The problem of magnetic Wannier functions may be described by showing an analogy with the
non-magnetic case, as follows. In the absence of an external magnetic field, the space of states
for a single electron in a periodic field of the crystal lattice, its dynamics restricted to a single
energy band, may be represented both in terms of Bloch states (definite quasi-momenta) and
in terms of Wannier states (definite lattice coordinates). Both classes of states form complete
sets on the subspace of states in the band, and the unitary equivalence of these two descriptions
is guaranteed by the properties of Fourier transformation. When necessary, the spin degree
of freedom may be easily incorporated into this non-relativistic picture. The historical role of
these two pictures in understanding electronic structure and transport in crystalline solids, as
well as in classifying the solids, is well known. The fact that one may describe Bloch states
as superpositions of Wannier states, and vice versa, means that for an electron restricted to a
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single energy band one may think of ‘here’ and ‘there’ in terms of (Bravais) lattice coordinates.
The respective Wannier states are mutually orthogonal and form a complete set, and thus the
position of the electron is represented in the probabilistic manner of quantum mechanics. The
localization of Wannier states in solids is exponential, and this is an important point. However,
the case of a magnetic band is different.

If there existed well-localized Wannier states for a two-dimensional electron restricted
to a single Landau level, then these states could represent ‘here’ and ‘there’, and a regular
array of ‘point’ detectors spaced such that the unit cell area of this two-dimensional lattice was
equal to 2π , in magnetic length units, could represent a complete set of quantum observables.
This is not the case, since the product of the respective uncertainties cannot be made finite, as
discussed below in a more detail.

Consider a quantum electronic device, which makes use of two-dimensional spin-polarized
electrons in the lowest Landau level as charge carriers. Suppose there is a well-defined plane
created within a MOSFET or a heterojunction. The plane, as ‘seen’ by an electron, is by no
means merely a Euclidean plane: despite the fact that one may attribute a distinct coherent
state to any point in the plane, one cannot describe the collection of such states as ‘here’ and
‘there’, since these states are not mutually orthogonal. In other words, these states do not form
a quantum probabilistic sample space for allowed positions in the plane. (Imagine position
detectors in the plane to develop something like Wilson chamber tracks, as collections of dots.)
What should a quantum device engineer think then of the loci for charge carriers in the plane,
when dealing with electrons restricted to a single Landau level?

The new dimension introduced by Zak (1997) to the problem of magnetic Wannier
functions is its connection to Balian–Low theorem (Balian 1981, Low 1985) which may be
viewed as a global form of the position–momentum uncertainty relation—in contrast with
the conventional, ‘local’ formulation, in the form of the Heisenberg uncertainty relation.
The ‘incompatibility of localization and orthogonality’ described by Zak is in accord with
the ‘impossibility of constructing a well-localized representation of the magnetic translation
group’ discussed by Thouless (1984). A set of magnetic Wannier functions on a Gabor–von
Neumann lattice, in the weak form of localization, is studied in detail by Rashba et al (1997).

The studies cited above make it explicit that no simple description of a Hilbert space
of states on a single Landau level is possible, with account taken of the magnetic translation
symmetry, in terms of both localized and orthogonal states, simultaneously. This contrasts with
intuitive expectations, especially when compared to exponential localization in the absence
of a magnetic field, known due to the seminal paper by Kohn (1959). One could say that the
belief in the existence of a local description of an electron in a Landau level that guided the
pursuit of magnetic Wannier functions for decades has had no grounds, and one could leave
it at that. On the other hand, a variety of questions, as regards the solid-state theory basics,
are raised by the statement of such impossibility. Fortunately, a description in terms of strong
(exponential) localization still exists, and the aim of this paper is to present it explicitly.

To construct such a set, the usage of Jacobi theta functions is critical. An equivalent
description of translational symmetry in the Landau level is possible in terms of Weierstrass
sigma functions, and this possibility is exploited by Dubrovin and Novikov (1980). The
substantial usage of Jacobi identities for theta functions in the present paper seems to be a
novel feature. The other procedures belong to traditional approaches, and, in particular, the
transparent conventional orthogonalization procedure developed by Wannier (1937) does not
require any essential modification.

The paper is organized as follows. For reading convenience, some simplifying
assumptions, as well as conventions used, are listed in section 2. In section 3, the context is
created which allows construction of strongly localized magnetic Wannier functions, within a
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framework of two-dimensional representation of an anticommutative subgroup of the magnetic
translation group. Mathematical proofs and detailed description of some important properties
of the representation constructed are discussed in section 4. In section 5, the pseudo-spin
observable that naturally enters the translation invariant representation of the space of states
is described, in its coupling to external electric fields, and possible experimental studies are
discussed. A summary and discussion follow in section 6.

2. Some definitions, simplifying assumptions and notation

Without loss of generality, the lowest Landau level is considered; mapping to higher levels is
an easy task, and will not be discussed here. The Landau gauge Ay = Az = 0, Ax = −y
is used, along with representation in magnetic length units. Magnetic translations of a single
coherent state centred at the origin of the coordinate frame,

c(x, y) = e−(x2+2ixy+y2)/4, (1)

lead to a two-dimensional continuum of coherent states in the lowest Landau level, and this
forms the largest (and, of course, an overcomplete) set of functions relevant to the problem of
basis construction. Normalization of the coherent state ‖c‖ = √

2π is convenient for avoiding
unnecessary constant factors. One takes wavefunctions of the coherent states centred about
some lattice sites (lx , ly) ∈ L and, after performing summation, a set of (non-normalized)
Bloch functions is obtained:

ϕkx ky (x, y) =
∑

ei(kx lx +ky ly )clx ly (x, y). (2)

It may be said that Bloch functions are maps L → ϕkx ,ky , in a special sense, of these
lattices into Hilbert space. (Later it will be shown that the choice of lattice is an analogue of
the choice of quantization axis for a spin 1/2.) In standard zone theory, any lattice may be
used. To construct a conventional orthonormal set in the magnetic case, one has to take a lattice
with the Wigner–Seitz cell area equal to 2π , corresponding to a single (normal) magnetic flux
quantum per unit cell. That is expected from the viewpoint of the density of states in a single
Landau level. Then the actual orthogonalization is performed, and so one obtains the Wannier
function set on a Gabor–von Neumann lattice.

To prepare for modification of the method, existing choices for translational periodicity
of the point sets are described below in a more detail. When constructing Bloch functions in
the presence of a magnetic field, a distinction is to be made between the lattices as collections
of lattice sites, on one hand, and the lattices as collections of translation vectors, on the other.
The latter vectors represent symmetry transformations in the Hilbert space of states, magnetic
translations, which belong to a subgroup of the magnetic translation group. Such a distinction
is to be made mainly because of the fact that a uniform and stationary magnetic field enters
the Hamiltonian of the problem via a vector potential, and the latter is not a uniform field. In
the construction of magnetic Wannier functions one has to deal with both meanings, and that
is illustrated in figure 1; both lattice sites and translation vectors are shown, for some choices
relevant to the problem under discussion. The magnetic flux through the smallest unit cell
of area π is equal to half a flux quantum. The four sublattices labelled as 3, 4, 1 and 2 have
unit cells of area 4π . Since a special choice of a subgroup of the magnetic translation group
is needed, it is convenient to introduce special notation for the lattices: L3, L1, L4 and L2,
respectively, for future reference. The L3 lattice sites (lx , ly) could be taken as lx = √

πm and
ly = √

πn, m and n being even integers here and odd integers for the L1 lattice, and similarly
for L4, and L2; for the sake of simplicity, the special case a = b = √

π will be considered.
This fixes the lattices with respect to the vector potential gauge.
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Figure 1. The four lattices labelled as 3, 4, 1 and 2, and described by periods 2a and 2b, are
shown. The union of these is a lattice characterized by unit cell area π , which corresponds to half a
magnetic flux quantum per unit cell. Also shown are the periods a + b and b − a of a lattice which
represents the conventional Gabor–von Neumann set that is in one-to-one correspondence with the
density of states in the Landau level.

It will be convenient to have special notation for collections of periods, representing
translational symmetry, such as lattices generated by vectors 2a and 2b. The latter will be
denoted as L4π , showing the unit cell area in magnetic length units. When this is a real
(position) space lattice, the reciprocal (quasi-momentum) space lattice is Lπ , and vice versa.
Therefore, the lattices Lµ, µ = 3, 4, 1, 2, are L4π lattices. The vectors a + b and b −a generate
a square lattice with a unit cell of area 2π , L2π , which is represented in figure 1 by the union
of the third and the first sublattices, L31 = L3 ∪ L1 (equivalently, the fourth and the second
could be taken instead, L42 = L4 ∪ L2); in this case both real and quasi-momentum spaces
have L2π symmetry, and this is the conventional Gabor–von Neumann lattice. Also of interest
is the union of all four lattices that may be thought of as a union of the mutually dual lattices
L31 and L42; L3412 = L42 ∪ L31 is an Lπ lattice.

Bloch functions constructed in a standard manner, on a Gabor–von Neumann lattice, form
a basis consisting of states that belong to (and define) one-dimensional generalized subspaces
of the Hilbert space of states in Landau level, and their norm with respect to these subspaces
is defined by integration over the Wigner–Seitz cell area, i.e. the integration domain is defined
modulo L2π :

‖ϕkx ky ‖2 =
∫ ∫

|ϕkx ky (x, y)|2 dx dy. (3)

The corresponding resolution of the identity is written as an integral in reciprocal space modulo
L2π too. (In the context of the following discussion, the integration domain in (3) would be
doubled later, integrating modulo L4π in real space, which means turning to another (two-
dimensional) invariant subspace.) For performing normalization of the corresponding set
of Bloch functions, and, as a result, orthogonalization of Wannier functions, a convenient
procedure is that developed by Wannier, which essentially involves division by the norm
defined by (3) with respect to magnetic translations on an L2π lattice.

In the case of magnetic sub-bands, the overcompleteness of the set under consideration is
known due to the identity proved by Perelomov (1971). Using the standard orthogonalization
procedure described above, the magnetic Wannier functions set may be constructed as a set
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of weakly localized states for which the product �x�y cannot be made finite, because of
the restrictions due to the Balian–Low theorem; note that 2�x�y = (�x)2 + (�y)2 in this
geometry. A set of this type was studied by Rashba et al. The authors found that (despite infinite
uncertainty products) about 95% of the probability density is contained in the Wigner–Seitz
cell, which may be satisfactory for some problems.

Obviously, in a great number of problems exponential localization is necessary. In the
next section, a modified approach is presented which allows construction of such a strongly
localized Wannier set. Within the scope of this, other interesting features of translational
symmetry in an external magnetic field are also revealed.

3. A quartet of Bloch functions and localization of Wannier functions

A subtlety in the construction of the set of magnetic Wannier functions described is in that,
despite the commutativity of the magnetic translations Ta+b, and Tb−a , these do not form an
Abelian group as a subgroup of the magnetic translation group, Tb−a Ta+b = −T2b. This may
be seen from the fact that the magnetic translations Ta and Tb are anti-commutative, because
of the half of a magnetic flux quantum threading the unit cell of area π of the L3412 lattice:

TbTa + Ta Tb = 0. (4)

That is why the conventional, as in the absence of the magnetic field, argumentation based
on irreducibility of the one-dimensional representation of the translation group does not apply
in the magnetic case. The dimension of the representation as an irreducibility criterion here
also does not work properly, and not only from the physical viewpoint. Note that the minimal
dimension for the twice-larger subgroup of the magnetic translation group is 2, which may be
seen from anticommutation relation (4), e.g. by relating it to an SU(2) group representation
(see below). The above statements will become clear after the construction of an alternative,
in a special sense, representation, which is worth treating as physically irreducible.

To be able to deal with strongly localized states and finite uncertainties only, in consonance
with requirements introduced by Kohn, a more sophisticated approach is needed, such as
follows from the context created by the Balian–Low theorem. There is no alternative to
allowing some non-orthogonality, as follows from the discussion presented by Zak. Then, in
order to preserve translational invariance, relaxing the orthogonality condition with respect to
the states centred on the sites that belong to two complementary L4π lattices is a physically
correct procedure. Moreover, this is what creates the context for the present study. Thus,
mutual orthogonality is required for the functions centred on each of L3 and L1 lattices only.
Non-orthogonality between the states centred at the sites of the complementary sublattices
is allowed. In this context the two sets of Bloch functions are obtained, before actual
normalization is performed: ϕ3,kx ky (x, y) and ϕ1,kx ky (x, y). The Brillouin zone area is π ,
and not 2π , as for the conventional one-to-one correspondence between the numbers of flux
quanta and unit cells. These two sets of Bloch functions together represent the two-dimensional
subspace Hkx ky of the physically irreducible representation. Note that the smaller subgroup of
the magnetic translation group generated by the magnetic translations T2a and T2b is an ordinary
(non-magnetic) translation group, in contrast with that generated by the magnetic translations
Ta+b and Tb−a. Althoughϕ3,kx ky (x, y) andϕ1,kx ky (x, y) are not, in general, mutually orthogonal,
for the same (kx, ky) modulo Lπ , the linear envelope of these generalized vectors in Hilbert
space covers two-dimensional invariant subspace. (There is an exception for a single point in
quasi-momentum space, as discussed below.) The reason for the numbers ‘3’ and ‘1’ in the
notation becomes clear from the fact that summation (2) for (lx, ly) ∈ Lµ leads to a product of
Jacobi theta functions:

ϕµ,kx ky (x, y) = c(x, y)ϑµ̄(2kx + ix − y)ϑµ(2ky + x + iy). (5)



2362 G Avanesyan

Figure 2. The exponentially localized magnetic Wannier function centred at the origin; distances
are shown in magnetic length units. In this logarithmic plot of the probability density, the
exponential fall-off is seen clearly. Also seen are the zeros of the magnetic Wannier function.

Throughout this paper, the following convention is used: ϑµ(
√
πz/2, e−π ) → ϑµ(z). The

other two functions may be constructed in the same way, but they are linearly dependent on the
former two. These four sets are orthogonal for different quasi-momenta, as follows from their
Bloch function-like definitions, but they are not, for the same quasi-momentum. An example
of using four non-orthogonal sets of functions with non-orthogonality between them, in signal
processing, is given by Grochenig (2000).

A pair of complementary sets treated as a single set then lead to a conventional set on the
Gabor–von Neumann lattice, which is overcomplete by just one state, due to the Perelomov
identity, and, consequently, one returns to the weakly localized magnetic Wannier functions
set.

The sets of magnetic Wannier functions constructed here are strongly localized, which is
seen clearly from the exponential fall-off in the logarithmic plot in figure 2. The function is
oscillating, and this is seen in the plot. Orthogonalization is performed in a standard manner
by dividing the function sets ϕµ,kx ky (x, y) by their norm and calculating the integral over the
Brillouin zone, as in conventional zone theory. The norm is calculated by using transformations
of the theory of theta functions, and since these are extremely important in the context of the
construction of a special representation of the magnetic translation group, the mathematical
description and derivations are presented in the next section.

4. Jacobi identities and symmetry properties of Bloch functions

The four sets of Bloch functions constructed transform under the action of the smallest relevant
subgroup of the magnetic translation group, i.e. that generated by T2a and T2b, in the same
way:

ϕµ,kx ky (x + 2a, y) = e−2iakxϕµ,kx ky (x, y), (6)

e2ibxϕµ,kx ky (x, y + 2b) = e−2ibkyϕµ,kx ky (x, y). (7)

This is because of the fact that a subgroup of the magnetic translations group corresponding
to the L4π lattice and the ordinary translation group are isomorphic. The relations (6) and (7)
may be viewed, in addition to the standard interpretation as eigenvectors of unitary operators,
as definitions of a functional subspace by imposition of boundary conditions. The next step
is to prove that this generalized subspace, which represents the states of a charged particle in
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a Landau level, is effectively two dimensional. Then the normalization integral (3) should be
redefined as over a domain modulo L4π .

The functions (5) obtained by direct summation over one of the four lattices Lµ may be
transformed, by first using the following formulae for the Jacobi imaginary transformation,
Whittaker and Watson (1927), as for the case of the square lattice:

ϑ3(z) = e−z2/4ϑ3(iz), ϑ1(z) = −ie−z2/4ϑ1(iz),

ϑ4(z) = e−z2/4ϑ2(iz), ϑ2(z) = e−z2/4ϑ4(iz).

The Bloch functions are transformed as follows:

ϕµ,kx ky (x, y) → c(x, y)e(−ikx +(x+iy)/2)2ϑµ(−2ikx + x + iy)ϑµ(2ky + x + iy).

The periodicity in kx is preserved now due to an exponential factor. The form above is essential
for further consideration, since the pair of Bloch function sets constructed is to be transformed
further into another pair of function sets with somewhat different properties. To do so we use
Jacobi identities. As a next step the theta functions are transformed to forms with different
arguments with the help of the identities

ϑ3(u + v)ϑ3(u − v)ϑ3(0)2 = ϑ1(v)
2ϑ1(u)

2 + ϑ3(v)
2ϑ3(u)

2,

ϑ1(u + v)ϑ1(u − v)ϑ3(0)2 = ϑ3(v)
2ϑ1(u)

2 − ϑ1(v)
2ϑ3(u)

2.

It should be noted that the latter relation is specific to the case of a square lattice, since in this
case

ϑ4(z)
2 = 1√

2
(ϑ3(z)

2 + ϑ1(z)
2), ϑ2(z)

2 = 1√
2
(ϑ3(z)

2 − ϑ1(z)
2). (8)

For the two Bloch functions the following expressions are obtained (the factor ϑ3(0)−2 in
the right-hand side is omitted):

ϕ3,kx ky (x, y) ∝ e−k2
x −y2/2+kx (y−ix)(ϑ3(ky + ikx)

2ϑ3(ky − ikx + x + iy)2

+ ϑ1(ky + ikx)
2ϑ1(ky − ikx + x + iy)2

)
, (9)

ϕ1,kx ky (x, y) ∝ e−k2
x −y2/2+kx (y−ix)(−ϑ1(ky + ikx)

2ϑ3(ky − ikx + x + iy)2

+ ϑ3(ky + ikx)
2ϑ1(ky − ikx + x + iy)2

)
. (10)

As a result, the products of theta functions in the expressions for the Bloch functions transform
to linear combinations of squares of theta functions, and this is different in many respects,
as discussed below. While the functions ϕµ,kx ky (x, y) are periodic in (kx , ky), the functions
defined as

ψµ,kx ky (x, y) = e−k2
x /2−y2/2+kx (y−ix)ϑµ(ky − ikx + x + iy)2 (11)

are not: instead, they are quasi-periodic. So are the coefficients in the linear combinations
of ψµ,kx ky (x, y) in (9) and (10), but the quasi-periodicity multipliers for the latter cancel with
those of the former to give functions periodic in (kx, ky), ϕµ,kx ky (x, y). We rewrite (9) and (10)
as

ϕ3,kx ky (x, y) ∝ ψ3,kx ky (0, 0)ψ3,kx ky (x, y) + ψ1,kx ky (0, 0)ψ1,kx ky (x, y), (12)

ϕ1,kx ky (x, y) ∝ −ψ1,kx ky (0, 0)ψ3,kx ky (x, y) + ψ3,kx ky (0, 0)ψ1,kx ky (x, y). (13)

The functions ϕµ,kx ky (x, y) and ψµ,kx ky (x, y) coincide at the centre of Brillouin zone. Now
that the sets of Bloch functions are expressed in terms of squares of theta functions, as if
obtained by magnetic translations of the ‘central’ pair, the structure of the functional subspace
may be studied explicitly by use of linear identities (8) for squares of theta: any pair of them
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may be expressed linearly via the other pair. Moreover, the pair of functions ψ3,kx ky (x, y)
and ψ1,kx ky (x, y) form a generalized orthonormal set in the Hkx ky subspace. This is proved by
calculating the scalar product within the subspace Hkx ky defined by (6) and (7), and the norm
defined by (3) where integration is performed modulo L4π .

The L4, L2 pair is transformed similarly to give

ϕ4,kx ky (x, y) ∝ ψ4,kx ky (0, 0)ψ3,kx ky (x, y) + ψ2,kx ky (0, 0)ψ1,kx ky (x, y), (14)

ϕ2,kx ky (x, y) ∝ ψ2,kx ky (0, 0)ψ3,kx ky (x, y)− ψ4,kx ky (0, 0)ψ1,kx ky (x, y). (15)

Expressions (12)–(15) above may be given an interpretation that connects the lattice origin
choice to the Bloch amplitudes constructed. It may be shown that there is a relativity relation
between the position of the critical quasi-momentum in the reciprocal space and the real space
lattice origin position, as for L3. Then, the origin of the amplitudes ψµ,kx ky (0, 0) in (12)–(15)
is to be interpreted as a consequence of that choice. Such effects are typically described as
Aharonov–Bohm effects.

Here it is worth mentioning that there exists a physically clear analogy between the ‘space’
and ‘body’ descriptions of the rotations of a solid body with fixed centre of mass, on one
hand, and the two types of Bloch function, (5) and (11), on the other. A distinctive feature
of ψ3,kx ky (x, y) and ψ1,kx ky (x, y), as compared to ϕ3,kx ky (x, y) and ϕ1,kx ky (x, y), is that the
functions of the former pair are orthogonal, and so form an orthonormal basis in any two-
dimensional invariant (kx , ky) subspace Hkx ky .

The normalization c(x, y) → a(x, y) in (2), which leads to the Wannier function that is
plotted in figure 2, is performed easily in this basis by using an identity that may be proved
with the help of the following identity for Jacobi theta functions:

|ϑ3(ξ + iη)|4 + |ϑ1(ξ + iη)|4 = |ϑ4(ξ + iη)|4 + |ϑ2(ξ + iη)|4 ∝ ϑ3(2ξ)ϑ3(2η). (16)

Similar identities,

ϑ3(ξ + iη)2ϑ1(ξ + iη)2 − ϑ1(ξ + iη)2ϑ3(ξ + iη)2 ∝ ϑ1(2ξ)ϑ1(2η),

ϑ4(ξ + iη)2ϑ2(ξ + iη)2 − ϑ2(ξ + iη)2ϑ4(ξ + iη)2 ∝ ϑ1(2ξ)ϑ1(2η),
(17)

play an important role in the description of the non-orthogonality of the Bloch functions,
illustrating the Balian–Low theorem as interpreted by Zak, and responsible for non-locality
effects. The scalar product of Bloch functions that describes non-orthogonality takes the form∫ ∫

ϕ1,kx ky (x, y)ϕ3,kx ky (x, y) dx dy ∝ ϑ1(2kx)ϑ1(2ky),

which follows from the expressions (9), (10) and (17), written above. At the same time,
relations (17) are used to describe the intrinsic (with respect to the invariant subspace) degree
of freedom of the charged particle. An approach based on the formulae presented above is
a convenient framework for studying non-locality in this context. The respective operators
of projection onto the states ϕ3,kx ky (x, y) and ϕ1,kx ky (x, y) are not commutative; nevertheless
they present a convenient framework for further detailed discussion of any relevant physical
phenomenon. In this sense, the representation constructed may be treated as physically
irreducible, despite the twice-larger dimension of the representation.

The operator of projection onto the Hkx ky subspace may be written in the form

Pkx ky = |ψ3kx ky 〉〈ψ3kx ky | + |ψ1kx ky 〉〈ψ1kx ky | = |ψ4kx ky 〉〈ψ4kx ky | + |ψ2kx ky 〉〈ψ2kx ky |.
So any pair may be used just as well, and their equivalence follows from the identities of the
theory of theta functions. Pkx ky is Lπ periodic in quasi-momentum space. A simple expression
for the kernel of the projection operator may be proved to hold, with the help of relation (16),
but we will not go into further detail here.
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Here is a brief description of the representation for the anticommutative subgroup of the
magnetic translation group. The quasi-momentum (kx, ky) is defined modulo Lπ and thus
belongs to a Brillouin zone that has area π , and not 2π , as in the conventional case, and any
point of the Brillouin zone represents a two-dimensional subspace, Hkx ky , of the Hilbert space
of states H in a single Landau level. By representing the subspace with the help of a pair
of functions, ψ3,kx ky (x, y) for ‘spin’-up states and ψ1,kx ky (x, y) for ‘spin’-down states, a two-
dimensional representation for the subgroup that is generated by the magnetic translations Ta

and Tb of the magnetic translation group is obtained:

Ta(kx, ky) = e−iakx

√
2

(
1 1
1 −1

)
, Tb(kx , ky) = e−ibky

√
2

(
1 −1

−1 −1

)
,

(TbTa)(kx, ky) = ie−i(akx +bky )

(
0 −i
i 0

)
.

(18)

The third matrix is the Pauli matrix σ2, and the two others are rotated Pauli matrices,
(σ3 ± σ1)/

√
2. Transformations (18) resemble those for spin 1/2 wavefunctions due to

rotations in three dimensions. At the critical (with respect to the origin chosen) quasi-
momentum, kx = ±√

π/2, ky = ±√
π/2, the rank of the pair of transformations (9) and (10)

is 1, and this is an independent proof of the Perelomov identity, and the infinite uncertainties
discussed above. At this point T 2

a = T 2
b = (TbTa)

2 = −1, and magnetic translations act as pure
(with no multiplicative phase factor) three-dimensional rotations by angle π . Therefore, the
internal, with respect to any subspace Hkx ky , degree of freedom is commutative with operators
T2a and T2b, and matches that of spin 1/2. This could be guessed from the anticommutativity
relation (4).

The two-dimensional representation of the magnetic translation group constructed here
has remarkable features, in addition to the strong, exponential localization of magnetic Wannier
functions: a twice-larger set of sites on the real space lattice are involved in the representation,
exactly those belonging to the sites of the half-flux-quantum unit cell lattice. In addition, a
quartet of Bloch functions in each two-dimensional (kx, ky) subspace, namely ϕµ,kx ky (x, y),
µ = 1, 2, 3, 4, is present.

5. The pseudo-spin observable

The solution to the magnetic Wannier functions problem that is given by the description
in terms of two-dimensional invariant subspaces is not complete, since the question of the
physical meaning of the intrinsic, to those subspaces, degree of freedom, which arises from
the construction scheme above, remains unanswered. To have a complete set of observables,
along with the quasi-momentum, there must be defined something like a quasi-coordinate
observable, as is done in zone theory, in the absence of a magnetic field. In the latter case a
quasi-coordinate replaces the zone number observable. Here the case is somewhat different.
An obvious definition follows from (18), apart from exponential phase factors, on recalling
the definition of rotations in quantum mechanics as exponential functions of the angular
momentum. The physical meaning of this observable is revealed further by its behaviour
in an electric field. Therefore, the next question is the effect of an electric potential applied to
a two-dimensional charge in a strong magnetic field, in its coupling to the pseudo-spin degree
of freedom.

First, consider an example of a potential that is antiperiodic with respect to an Lπ lattice
in real space, such as V (x, y) ∝ sin(bx) sin(ay). The calculation of the only non-zero matrix
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element on an invariant subspace, in perturbative analysis,∫ ∫
V (x, y)

1

i
(ψ3,kx ky (x, y)ψ3,kx ky (x, y)− ψ1,kx ky (x, y)ψ3,kx ky (x, y)) dx dy,

with the help of (17), reduces the matrix element value to a product of two similar terms such
as

1√
π

∫ √
π

0
ϑ1(2(ky + x)) sin(

√
πx) dx = e− 1

4π cos(
√
πky),

and we get a simple product expression for a dispersion law possessing electron–hole symmetry,
on an invariant subspace:

V (x, y) → Vc cos(akx) cos(bky)

(
0 −i
i 0

)
.

In this particular case the spectrum may be described both in terms of a single
conventional Brillouin zone, i.e. quasi-momentum defined modulo L2π in reciprocal space,
by diagonalization of the matrix above, and in terms of a twice-smaller, Lπ Brillouin zone with
an additional ‘spin’ degree of freedom. This is a single ‘spin’ component aligned along the
quantization axis, taken ‘parallel’ to the ‘diagonal’ magnetic translation. In the calculation of
the matrix elements of antiperiodic potentials

V (x + a, y) = V (x, y + b) = −V (x, y) = −V (x + a, y + b),

which are anticommutative with Ta and Tb, the role played by relations (17) for theta functions
allowing the definition of the pseudo-spin component with respect to an arbitrarily chosen
‘quantization axis’ in an invariant way is important. The two other operators present in (18)
may be described similarly.

Thus, along with the projection operator defined in section 4, which is equivalent to scalar
observables on an invariant subspace, and is represented by Lπ periodic operators, three other
operators may be constructed. These may be interpreted as a single vector operator.

The pseudo-spin degree of freedom may also be interpreted as a quasi-coordinate with non-
commutative components, coupled to the charge, and resembling the electric dipole moment.
The physical meaning of this observable is revealed by its coupling to the external doubly
periodic electric potential, and it is equivalent to a scalar and a vector, on an invariant subspace.

Potential landscapes of appropriate periodicity would not affect the conservation of the
quasi-momentum; i.e. any potential such that V (x + 2a, y) = V (x, y + 2b) = V (x, y) does
conserve the quasi-momentum (kx, ky). The effect of an electric potential applied to a two-
dimensional charge in a strong magnetic field, in its coupling to the pseudo-spin degree of
freedom, may be described as follows. With respect to the magnetic translations Ta and Tb,
four types of translational symmetry for the potentials which conserve the quasi-momentum
are allowed. For instance, imagine a four-pole gate, instead of the conventional single-poled
ones in 2DEG experiments, as in figure 3. The obvious correspondence of this to the lattices in
figure 1 is exploited, and the only pole, the third, is shown for viewing convenience. Similarly
connected are the conductors of the three other poles, producing a periodic potential landscape
that conserves quasi-momentum and makes accessible the pseudo-spin degree of freedom.
The four voltages applied to the gate poles correspond to the four possible symmetries of
the potentials conforming with the quasi-momentum conservation condition, and the relations
between them are as follows:

V0 = (V1 + V2 + V3 + V4)/4,

Va = (−V1 − V2 + V3 + V4)/4,

Vb = (−V1 + V2 + V3 − V4)/4,

Vc = (V1 − V2 + V3 − V4)/4.
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Figure 3. One of the four isolated arrays of connected conducting wires positioned perpendicular
to the surface of a semiconductor. The array forms one of the four ‘poles’ of a gate that replaces
the conventional gate made of a uniform metallic film. The potential landscape created by the
four independently applied voltages conserves the quasi-momentum, thus allowing access to the
pseudo-spin degrees of freedom exclusively.

The energy of the particle may be written in a form analogous to that for a magnetic
dipole, namely, as V (x, y) = σ0V0(x, y) − 	σ · 	V (x, y), using standard Pauli matrices, with
the vector function 	V (x, y) : 	V = (Va, Vb, Vc), its components being defined with respect to
anticommutative magnetic translations Ta and Tb that represent three-dimensional rotations in
‘spin’ space.

The possibility of new resonance phenomena may be predicted within this scope; this
involves the detection of the precession of the pseudo-spin introduced. There are also methods
other than the four-pole gate method described above which could work, e.g. creating two-
dimensional superlattices with complex structures of the unit cell, with respect to the double-
flux Bravais lattice. Direct observation of non-locality effects should contribute significantly
to the understanding of quantum phenomena.

With the proof of the possibility of accessing the ‘spin’ degree of freedom, in principle, by
applying periodic potentials of a special configuration, the set of physical observables becomes
complete, as required in quantum mechanics.

6. Summary and discussion

The role played by the concept of quasi-momentum is at the heart of condensed matter
physics. While the description in terms of quasi-momentum in the absence of an external
magnetic field leads naturally to a scalar ‘complementary’ observable, namely, the energy
band index (or, equivalently, to a quasi-coordinate vector), the study presented shows how this
description is to be modified in the magnetic case. Because of the Balian–Low theorem, one
has either to use a description in terms of non-orthogonal and ‘non-commutative bands’, as
subspaces of the Hilbert space of states, or to tolerate weak localization, and infinite uncertainty
products. The context created by relaxing the orthogonality condition, in order to preserve
translation invariance and strong localization, leads to non-orthogonal subspaces, and, as a
consequence, to pseudo-spin. It is the imposition of a (global) localization condition, in view
of the ‘discretization’ of the plane ‘seen’ by a 2D charged particle restricted to a single Landau
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level, that dramatically affects the structure of the representation of the space of states induced
by magnetic translation symmetry. In contrast with the case in conventional theory where the
energy bands represent mutually orthogonal subspaces of states, the band index observable is
replaced by non-commutative components of the pseudo-spin vector observable.

The quasi-momentum defined in the present paper is an additive conserving quantity. This
may be seen, for a pair of particles, from the fact that corresponding operators commute with
the commutative subgroup of the magnetic translation group, and it may be checked easily,
with the help of the Bloch functions constructed, that any interaction that depends on inter-
particle distance only does conserve the quasi-momentum. In fact, there is no need to check it
literally since the quasi-momentum constructed is analogous to the ordinary quasi-momentum,
due to group isomorphism. One may recall that the main purpose of the study conducted by
Rashba et al (1997) was to give a framework convenient for solving interaction problems.
The description in terms of quasi-momentum introduced in the present paper opens up new
possibilities for such studies.

The sets of strongly localized Wannier functions constructed make it possible to clarify
the question of ‘here’ and ‘there’ posed in the introduction. Critical is the understanding of the
fact that the pseudo-spin degree of freedom appears in the spatial description of the charged
particle in a magnetic field, restricted to a single Landau level, with no reference to the actual
spin. The two (complementary) schemes of description, i.e. in terms of extended (Bloch) and
in terms of localized (Wannier) states, are preserved due to the introduction of ‘spin’. Thus
one may think of electrons being ‘here’ and ‘there’ in terms of ‘spin’-polarized states, with
respect to the double flux quantum Bravais lattice.

The physical meaning of the ‘spin’ may be revealed in the Bloch representation by
considering application of an electric field. Stationary states in a doubly periodic electric
field and a uniform magnetic field in the case of a single flux quantum per unit cell may
alternatively be described as polarized ones with definite quasi-momenta. From the physical
viewpoint, the most intriguing possibility is that of observing resonance phenomena in electric
fields varying in time, their spatial periodicity being commensurate with the magnetic field
half-value. Recent advances in nanotechnology present new possibilities for creating quantum
devices on the magnetic length scale. The simplest and a quite direct experiment in this area
is the detection of precession of pseudo-spin by standard methods of magnetic resonance.
There are also many other methods, including observation of echo phenomena, but further
discussion of these seems to be inappropriate until any is established unambiguously. Apart
from the practical goals in quantum device engineering, observation of resonant non-linear
effects on the magnetic length scale could be a step towards a better understanding of the
concepts of quantum mechanics.

At least four aspects of the problem of magnetic Wannier functions are of interest.
Formally speaking, the mathematical aspect consists in a problem of square integrable basis sets
in Hilbert space, related to a subgroup of the Weyl–Heisenberg group unitary representation
action, the latter being isomorphic to the magnetic translation group. Dubrovin and Novikov
(1980) do mention this isomorphism. The second aspect is signal processing. Due to the
paper by Zak (1998), the bridge between the areas was established. The questions of physical
analogies have to be a subject of special study. The third aspect is the phase space quantum
mechanics, and there is need for a separate discussion of this too. It is the problem of the
2D Bloch electron in a strong magnetic field that is explicitly intuitive and does not raise
unnecessary questions as regards interpretation. One clearly has an in-plane particle, and the
magnetic translations form a symmetry group that may be treated unambiguously, with no
reference to the particular mechanics (either classical, or non-relativistic quantum, or other).
The 2D electrons that are moving within a heterojunction or a MOSFET present the best-known
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example for particles in a plane. That is why this fourth aspect had to be considered first in a
line of problems related to the general problem of magnetic Wannier functions. The parallels
and analogies may wait for a while.

The actual spin degrees of freedom of electrons, which are irrelevant to the spatial degrees
of freedom, in the non-relativistic approximation, have so far been neglected completely; their
inclusion into the consideration is trivial. An interesting question then is the possible coupling
of these two spins.
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